F15003

Examensarbete 30 hp
Januari 2015

UPPSALA
UNIVERSITET

Kidney Dynamic Model Enrichment

Nils Olofsson

UPPSALA
UNIVERSITET

Teknisk- naturvetenskaplig fakultet
UTH-enheten

Besoksadress:
Angstrémlaboratoriet
Lagerhyddsvagen 1
Hus 4, Plan 0

Postadress:
Box 536
751 21 Uppsala

Telefon:
018 — 4713003

Telefax:
018 — 471 30 00

Hemsida:
http://www.teknat.uu.se/student

Abstract

Kidney Dynamic Model Enrichment

Nils Olofsson

This thesis explores and explains a method using discrete curvature as a feature to
find regions of vertices that can be classified as being likely to indicate the presence of
an underlying tumor on a kidney surface mesh. Vertices are tagged based on
curvature type and mathematical morphology is used to form regions on the mesh.
The size and location of the tumor is approximated by fitting a sphere to this region.
The method is intended to be employed in noninvasive radiotherapy with a dynamic
soft tissue model. It could also provide an alternative to volumetric methods used to
segment tumors. A validation is made using the images from which the kidney mesh
was constructed, the tumor is visible as a comparison to the method result.

The dynamic kidney model is validated using the Hausdorff distance and it is explained
how this can be computed in an effective way using bounding volume hierarchies.

Both the tumor finding method and the dynamic model show promising results since
they lie within the limit used by practitioners during therapy.

Handledare: Marc Daniel
Amnesgranskare: Anders Hast
Examinator: Tomas Nyberg
ISSN: 1401-5757, UPTEC F15003

Sammanfattning

Njurtumorer som véxer pa eller ndra ytan hos organet kommer orsaka en bula.
Genom att analysera ytan hos njuren kan en sadan bula hittas och tumorens
storlek och position kan sedan approximeras med en sfar. Detta kan anvindas
vid stralbehandling av sadana tumdrer.

I det hér fallet 4r njuren en datormodel som ursprungligen skapats fran
skiktrontgenbilder. Datormodellens yta bestar bestar av ett triangulért nét som
analyseras genom att berdkna kurvaturen for varje knutpunkt i nédtet. Kurva-
turen hos en grupp av knutpunkter kan sedan avgora om gruppen indikerar en
underliggande tumér eller ej. Nér en sadan grupp har funnits kan en sfiar som
minimierar avstandet till dessa knutpunkter hittas.

For att validera datormodellen behdvs ett slags matt pa hur fel den ar jamfort
med valideringsdata. Hér valideras modellen med det s.k. Hausdorff avstandet
som séger att det felet dr det storsta av alla lagsta avstand fran ena ytan till den
andra. Modellen valideras mot tva stycken 3D ytor skapade fran skiktrontgenbilder.

Bade metoden for att hitta tumdérer med hjélp av kurvaturdata hos modellen
samt modellen sjilv ar lovande da bada har uppskattade fel som ligger innanfor
gransen pa Smm som anvéands vid behandling. Dock skulle det vara 6nskvért
att validera bade metoden for att lokalisera tumorer och modellen med mer
jamforelsedata.

Résumé

Des tumeurs rénale qui grandissent sur, ou & coté de la surface de 'organe vont
faire une bosse. En analysant la surface du rein on peut trouver une bosse
comme ¢a et la taille et le position de la tumeur peut étre approximé avec une
sphere. On peut utiliser ¢a dans le traitement de rayons.

Dans ce cas, le rein est un modele d’ordinateur qui est originairement créé par
des images de scanographie. La surface du modeéle est un maillage de triangles
que l'on analyse pour, dans chaque noeud du meillage, calculer la courbure. Avec
la courbure d’un group de noeuds on peut déterminer si le group indique une
tumeur ou pas sous la surface. Si on trouve un groupe comme ¢a, une sphere
qui minimise la distance a des noeuds du group peut étre trouvé.

Pour valider le modele on a besoin de quelque measure d’erreur a comparer
contre des informations de validation. Le modele est validé avec la, soi-disant,
distance de Hausdorff qui dit que 'erreur est la plus grande distance, dans tous
les moins des distances entre des deux surfaces. Le modele est valideé avec deux
surfaces 3D qui sont créé par des images de la scanographie.

Aussi la méthode pour trouver des tumeur par utilisation des courbures du
modele, et méme le modele sont prometteurs car les erreurs approximatifs sont
a moins de la limite de 5mm qui est utilisé par des praticiens dans de traitement.
Pourtant, ca serait a valider aussie bien la methode pour trouver des tumeurs
que le modele avec plusieurs des informations de validations.

Contents

1

Introduction

1.1 Introduction
1.2 Goals of this Thesis
1.3 Thesis Outline

Background and Related work
2.1 Lesion Detection
2.2 Context of the Dynamic Model
2.3 Triangle Meshes oL
2.4 Differential Geometry and Discrete Curvatures
2.4.1 1D Curves and Curvaturein 2D
2.4.2 2D Surfaces and Curvature in3D
2.4.3 Discrete Curvatures,
2.5 Dynamic Model Error Approximation
2.6 Space Partitioning and Bounding Volume Hierarchies

Method

3.1 Software and Work Process

3.2 Tumor Detection oo
3.2.1 Method Overview
3.2.2 Curvature Computation
3.2.3 Morphological Dilatation of the Regions
3.2.4 Recursive Tagging
3.2.5 Region Labeling
3.2.6 Best Fit Sphere (BFS) Positioning

3.3 Model Error Estimation using the Hausdorff Distance
3.3.1 Hausdorff Distance
3.3.2 Optimization Using Bounding Volume Hierarchies

Results and Validation

4.1 Sphere Tumor Approximation
4.1.1 Results
4.1.2 BFS Convergence
4.1.3 Execution Time

4.2 Validation of the Dynamic Model
421 Results o
4.2.2 Hausdorff-distance Bounding Volume Optimization

Discussion

5.1 Possible Improvements oL
5.2 Conclusions
5.3 Future Work

SO ot

—_
S © © 00 IV

13
14
15

16
16
17
17
17
20
21
22
22
25
25
26

29
29
29
30
31
32
32
32

1 Introduction

1.1 Introduction

Tumors growing on or near the surface of a kidney will cause a small bump.
This thesis explains how we given a surface reconstruction of the organ can
retrieve the part of the surface that is indicative of a tumor. The tumor is
presumed to be spherical in shape and so the output of the presented method is
a sphere that gives the approximate location and size of the tumor. This project
is an extension of a dynamic kidney model presented in [1] that simulates the
organ deformation as a function of time during the breathing cycle using a mesh
morphing approach. In the model a tumor such as the one mentioned is present.
The end goal is to use the dynamic model and the tumor finding method in
conjunction during radiotherapy in order to minimize damage to tissue that
surrounds the tumor. The dynamic model is validated in this thesis using the
so called Hausdorff distance as an error measurement between meshes obtained
from the simulation and meshes reconstructed from images. The Hausdorff
distance computation has no real time constraints but was still optimized using
a space partitioning technique.

The proposed method is promising but needs to be consolidated and fine
tuned. More data, artificial or preferably real, to test the method on would be
preferred before any strong conclusions can be made. The same can be said
about the validation of the dynamic model, which also shows promising results.
The Hausdorff distance computation optimization gave a speed up of between
5 and 50 times compared to a brute force method depending on the mesh size.

The method for finding the tumor is based on computing the principal curva-
tures k1 and ko of the surface which provides significant information about its
local shape. This is exploited as a basic feature for finding regions of interest
(ROI) that present a certain curvature characteristic. We consider a ROI as
a bump with high positive Gaussian curvature that indicates the presence of
an outwards growing tumor. The ROI is found by a morphological dilatation
of a curvature type followed by a recursive tagging algorithm that divides the
mesh into different regions. The regions are then labeled in order to determine
the ROI. Finally, a Best Fit Sphere (BFS) algorithm allows to approximate the
tumor. The novelty of this approach lies in the use of tagging based on the
discrete curvature. In our context, it is used together with a dynamic model in
non-invasive radiotherapy of tumors. It also provides a computationally cheap
and noise insensitive alternative to tumor segmentation.

1.2 Goals of this Thesis

This thesis has two main goals. The first goal is to find an approximate position
and size of a sphere shaped tumor. This should be done by creating a method
for finding a highly convex area on an existing kidney triangular surface mesh
using a discrete curvature based approach. Further a sphere should be adjusted
to this area in a best fit sense. The result should in some way be validated.

The second goal of the thesis is to investigate the possibility of using an
existing or original approach for assessing an error in the dynamic kidney model
that this thesis expands on. This error measurement should then be used to
validate the dynamic model.

This is achieved through literature studies in mesh processing, 3D program-
ming techniques, 3D rendering, nonlinear optimization and medical imaging and
through implementation in some programming language.

1.3 Thesis Outline

The thesis contains a survey related to tumor detection in Section 2.1, a short
presentation of the associated dynamic kidney model in Section 2.2 and an
introduction to triangle meshes, curvatures and discrete curvatures and how
these may be computed on a triangle mesh in Sections 2.3 and 2.4. A discussion
on error computation in the context of 3D meshes and organ simulation can be
found in Section 2.5 and a related discussion on how space partitioning can be
used to optimize distance calculations lie in Section 2.6.

An explanation of the tumor obtaining method resides in Section 3.2 followed
by a description of the Hausdorfl-distance and how it may accurately and effi-
ciently be computed between two meshes in Section 3.3.

In Section 4, results and validation are presented and briefly discussed. Finally
a richer discussion of the results, possible improvements and future possibilities
reside in Section 5.

2 Background and Related work

2.1 Lesion Detection

In tumor segmentation and lesion detection, the two main families of methods
are image-based (2D) and shape-based (3D) approaches.

Image-based methods operate directly on the 2D medical acquisitions and are
associated with image segmentation. Thus, methods based on classification [2],
texture analysis [3] or region growing [4] can all be found to be used. These
methods cover lesion detection for several organs, e.g. liver [5] or kidneys [6].
Moreover, modalities in image segmentation to enhance contrast between differ-
ent tissues can help detect the structure of interest. The work described in [7] is
based on images coming from multi-phases acquisitions. Microwave tomography
is a new modality that is efficient when applied to tumor detection, especially
for breast cancer [8].

The second family is based on 3D information and is related to shape analy-
sis. Approaches using discrete curvature [9] or spherical harmonics [10] can be
found. Shape indices also represent a local measurement of the surface and this
information is used to detect colon [11] or breast [8] tumors. Noise in medical
images can lead to a noisy reconstruction which reduces the robustness of 3D-
based methods. A very efficient smoothing is based on the heat kernel diffusion
[12] since it allows the extraction of geometrical features of surface models [13].

A method based on image analysis would be justified if the contrast of the
images is high enough. FE.g. by using microwave tomography or multi-phases
acquisitions. The images from which the kidney is reconstructed come from
a standard CT-scan acquisition. The method we present here deals with 3D
information and is based on discrete curvature characteristics. The use of 3D
data is the logical continuity of [14] since its output is a 3D surface model.
Unlike [9], this method is entirely automatic and does not need a multi-phases
CT-scan acquisition.

2.2 Context of the Dynamic Model

The method proposed in this thesis is developed as a complement to the dy-
namic model described in [1]. This previous work simulates the motion and the
deformation of the kidney during the breathing cycle. It is created from three
medical imaging acquisitions taken at three different breathing phases: the ex-
hale phase, the inhale phase and the middle phase between the two previous
ones. From these acquisitions, three surface meshes of the kidney, M, My and
M3, are constructed [14]. The motion and the deformations are then calculated
by a mesh morphing from M; to M5 and then from M5 to M3. As mesh mor-
phing approaches are reversible, the full breathing cycle can be covered without
any additional computation.

Y N@m ¥ \

NS

Inhale Mid-Phase Exhale

Figure 1: Deformation of kidney during the breathing cycle by mesh morphing.

2.3 'Triangle Meshes

The dynamic model is a discrete surface in the form of a triangle mesh. Triangles
are together with quadrilaterals the most common fundamental polygon for
creating piecewise linear discrete surfaces. This since all other polygons of higher
degree can be subdivided into a set of triangles.

A triangular mesh M carries geometric and topological information. The
geometric information consists of a set of vertices V that store discrete positions
in space [15].

V:{Ula"'avn}a Vi = (xuyzvzz) ERSa 1 SZS’H

The topological information is how these vertices are connected to each other
on a graph. The vertices are connected by a set of edges &, each edge is the
connection of two vertices, and a set of faces JF, each face is a collection of three
edges that together form a triangle.

&= {617"'7677'1}7 ej = (vtvvh)7 1 S .7 S m

F=A{f1,. fp}s fo=1_(ej1,e52,€53), 1<k<p

An important topological property of M is that it has to be so called 2 —
manifold. This means that it cannot contain any edges that has more than
two adjacent faces and no vertices that are incident to more than one fan of
triangles. This ensures that the surface of M has no self-intersections and that
local neighborhoods can be well defined so that certain surface properties can
be calculated.

We now introduce the notion of a topological neighborhood on M. A pair
of vertices v; and vy are neighbors if they have a common edge. The ring
neighborhood or simply just the neighborhood A (v) of a vertex v is the set of
all vertices that share an edge with v, see Figure 2.

An important property of a M is its surface normal n which indicates its
orientation. On the face of a triangle the normal is well defined and can be
calculated by a cross product between two vectors that lie along two of the
edges, though care must taken into which edges are used so that the surface
orientation becomes consistent over all of M. On the edges and on the vertices
however it is in general not well defined and is instead calculated as a weighted
average of the normals of its adjacent faces.

Figure 2: A small set of vertices depicted as circles. They are connected by
edges, black lines. They in turn form faces, the white spaces on the interior.
One vertex is colored red and its neighborhood vertices has been colored blue.

2.4 Differential Geometry and Discrete Curvatures
2.4.1 1D Curves and Curvature in 2D

This section is dedicated to introducing the concept of curvature and how it can
be calculated. It also serves as a very brief introduction to parts of the field of
differential geometry [15]. We begin by introducing the notion of curves x(s)
and their curvature on 1 dimensional parametric functions embedded in R2.
x(s) is a differentiable vector valued function and s is its natural parameter.

x(s) = z(s)1+ y(s)j, s € [a,b] €R (1)

t(s) =x'(s) =2'(s)i+ 9/ (s)] #0, Vs € [a,b] (2)

t(s) is the tangent vector of the curve x(s) and we also calculate a normal
n(s) to the curve by rotating t(s) by 90° and normalizing it.

ns) = 7t(S)L
) = T ®)

The orientation of the curve and its normal is important because it also
determines the sign of the curvature. The curvature measures how much a
curve deviates from a straight line and can be defined and calculated in one of
two ways. Either as the second derivative of x(s) or by its oscillating circle,
which also provides an intuitive image of the curvature property, Figure 3. The
oscillating circle is the circle that best approximates the curve locally at some
point and the inverse of its radius give the curvature.

w(s) = 1) = @

Curvature plane

Oscillating Circle

Figure 3: The curvature at point p; is defined as the inverse of radius r; of the
oscillating circle at that point. Note that the curvatures at the two points p; and
p2 have different signs since their respective circle of curvature lie on different
sides of the surface, whose orientation is indicated by the surface normal n.

2.4.2 2D Surfaces and Curvature in 3D

We further generalize the notion of curvature on smooth surfaces S embedded
in R? with the following parametrization:

S(u,v) = y(u,vg , (u,v) € Q € R? (5)

and partial derivatives:

{xumw =G (w0) (6)

Xy (u,v) = 55 (u,v)

Assuming a regular parametrization, x, Xx,, 7 0, the tangent plane is spanned
by two tangent vectors x, and x, so that the surface normal is given by:

Xy X Xy

n=———— (7)

|30 X Xy |

We further introduce the Jacobian matrix J.

Odx Oz
- 2 | = x) (8)
du Ov

J corresponds to the linear map that transforms a vector w in parameter
space into a tangent vector t on the surface. From J we introduce the so called
first fundamental form:

. [E F|_ [xIx, xIx,
I=J"J= {G H} - [x{xu xfxv] 9)
It defines an inner product on the tangent space of S. E.g. is the cosine of
the angle between these two unit direction vectors given by the scalar product
W11W2.
We now extend the notion of curvatures on the surface S. We let t = (uz, v;) 7
be a tangent vector in parameter space at a surface point p € S. The normal
curvature £, (t) at p is the curvature of the planar curve created by intersecting

10

normal
vector

planes
of principal
curvatures

tangent
plane

Figure 4: Tangent plane, principal direction planes and surface normal on a
saddle shaped surface. The principal curvatures are visible as the red curves
that don’t lie in the tangent plane. [16]

the surface at p with the plane spanned by t and the surface normal n. We can
express normal curvature in the direction t as:

(t) tTTIt eu? + 2fugvy + gu?
H’IL = =
71t Eu? 4 2Fuv; + Gou?
Where IT is the second fundamental form.
_re_le f]_[xkn xIn
meata= [p = e) a

The partial derivatives in Equation 11 are calculated as:

=tTWt (10)

9%s

Xuu = 2y
%S

Xy = 228 (12)
%S

Xuv = Pudv

Rotating the tangent vector t around the normal and assuming that x,(t)
varies with t it can be shown that the curvature has two distinct extreme values,
called the principal curvatures. We denote these with x; for the maximum
curvature and ko for the minimum. If k1 # ko we can also denote two unique
associated tangent vectors t; and to that we call the principal directions. It can
also be shown that t1, to and n are orthogonal to each other, Figure 4.

The local properties of a surface can be compactly described in parameter
space using the Weingarten matrix W seen in Equation 10. It is a 2 X 2 sym-
metric matrix whose eigenvectors are the principal directions t; and to and its
eigenvalues are the principal curvatures x; and k.

(13)

v[i

B C
Now we also introduce the Mean and Gaussian curvatures, denoted by H

and K. These metrics are very important in shape analysis and also prove the
foundation for the proposed tumor finding method.

11

K<0 K=0 K>0

saddle ridge ridge peak

okl o
y > i oigey ' s g gL
H <0 ; = o et

minimal fat impossible

H=>0

Figure 5: Curvature types by sign in Gaussian and Mean curvatures [17].

K1+ K1
= — 14
. (14)
Kzlil'lig (15)

Further we also introduce nine curvature types defined by the sign changes
in H and K, Figure 5. It should be noted that out of these nine types only
four, saddle ridge, peak, saddle valley and pit occur in the context of general
meshes since ridges and wvalleys effectively require that k; or kg is 0, or in the
discrete case within some threshold value and the minimal type also requires
the special case where k1 and ks is of the same absolute value but of different
sign. This can be seen in Figure 6¢ where only the four remaining curvature
types are present.

Saddle Ridge
Peak
Saddle Valley|

(a) Mean curvature. (b) Gaussian curvature. (c¢) Curvature types.

Figure 6: Mean, H, and Gaussian, K, curvatures together with the curvature
types formed by their signs.

12

2.4.3 Discrete Curvatures

When computing an approximation to the principal directions and curvatures
on a triangular mesh we make use of the local properties of neighboring vertices,
edges and faces. In this section four such methods are mentioned and briefly
compared to the method of choice, which is further described in Section 3.2.2.

One way of doing this is by using covariance matrices as approximations to
the fundamental forms I and IT in Equations 9 and 11 [18]. For a vertex v and
its n neighbors Vx on a mesh the first 3 x 3 covariance matrix at v is calculated
as:

1< 1<
Cr= EZ(UZ _l'l’v)(vi _l*l’v)T7 Hy = Ezvi
i=1 i=1
Two of its eigenvectors, t1 and to form an approximation to the tangent plane
at v while the third is the normal n. A second 2 x 2 matrix is calculated as:

1 1«
Cu= > (wi—m)wi—)" py=-> u
i=1 =1
with

v; —)t
o t-om [0

The eigenvectors to Cyy is then considered as approximations to the princi-
pal directions at v. This method is simple but uses only the position of the
neighboring vertices.

Three other methods are described in [19] along with the one used. Like in
the previous method we consider a vertex v and its n neighbors v; € Vy. We
also consider the normal vector to v, n and the vector y, from v to v; projected
on the local tangent plane. There is a so called normal curvature approximation
method in which the normal curvature x; = y? Wy, is approximated by:

(v—2v;)n
(v—v;) (v—1;)

Which produces a system of equations:

Iii=2

YiWy,=r;, 1<i<n
That we want to solve for W. The system can be written as:

A
yIWy =l ol [o] |u] =l 2w) |
g C

Letting U be the n x 3 matrix with rows (u?,2uv;,v?),x = (4, B,C)T and

i

d be the n-vector containing the curvatures x; the system can be written as:

Ux=d

This system will be overdetermined and needs to be solved in a least squared
fashion.

13

In the quadric surface fitting method [19] a quadratic surface patch S, is
fitted locally to the vertex v.

S, = guz + Buv + gvz
Where A, B,C are the same entries in W as in Equation 13. Just as in the
normal curvature method this will form a systems of equations. It can be shown
that these two methods are identical in nature, just that the former will approx-
imate the curvature with a circle and the latter with a parabola.

A more novel method described in [20] calculates an estimate for the curva-
ture tensor for each edge, then an average may be calculated for the vertex.
This method may be much more accurate and robust than the ones mentioned,
especially on highly irregular meshes.

The first three methods mentioned are at most second order and so the third
order method chosen, in which a cubic surface patch is used, supposedly will
be more accurate. The last method should be compared to this one in practice
but was never implemented. However the meshes used are highly regular and
smooth and so a more robust method may in practice make very little difference.

2.5 Dynamic Model Error Approximation

In order to validate the dynamic models accuracy an error measurement is re-
quired. No one standard error measurement exists for this kind of medical
soft tissue mesh simulations and many methods are validated simply by visual
inspection, e.g. a comparison against some image data or proposed reference
models [21]. However for general meshes a standard difference measurement is
the Hausdorff-distance [22]. It is commonly used to measure the difference in
meshes that has been smoothed, subdivided or re-sampled to a lower resolution
[23]. This in order to make sure that the overall shape of the mesh is preserved
during the operations and that the mesh remains of good quality. Other meth-
ods are also used to validate mesh quality but is inapplicable in this context
[24]. Hausdorff-distance is also used for precise collision detection between com-
plicated meshes [25]. The Hausdorfl-distance is a measurement of the global
worst error, and as a complement a root mean squared distance (RMSD) is also
calculated.

The error is computed for two meshes. They correspond to the dynamic model
between the inhale and mid-phase and between the mid-phase and exhale. The
two meshes from the dynamic model is then compared to meshes constructed
from image acquisitions at the corresponding in between breathing phases.

14

2.6 Space Partitioning and Bounding Volume Hierarchies

Even though the error estimation is performed off-line an optimization was made
to speed up the computation.

Space partitioning is a family of commonly used optimization techniques that
works by dividing one problem, where many objects interact with each other
based on their relative distance, that is of some complexity into two steps of
lower complexity. Thereby reducing the overall complexity and the required
runtime. However there is a trade off in memory consumption since new data
structures are needed. Two essential kinds exist, Bounding Volume Hierarchies
(BVH) and Quad-Tree(2D)/Octree(3D)/KD-trees. The former mainly used on
static object components and the later more common in problems with dynamic
objects where the partitioning data structure has to be re-created often. They
are also used in conjunction with each other. A famous example of Octree/Quad-
Tree partitioning is the N-body problem in which celestial bodies or particles
interact with each other through gravity or other forces in 2 or 3 dimensions
[26]. Space partitioning is also commonly used in ray trace rendering and in
the video games industry where fast real time calculations are necessary. There
it is used for rigid body physics simulations where the model meshes usually
are much more complex than the bounding volumes through which they are
tested for collision with each other. Game objects are then divided and encap-
sulated by BVHs while the game world is divided using an Octree or Quad-tree.
The method implemented here uses BVHs of sphere swept rectangles (SSR) to
encapsulate the 3D models.

15

3 Method

3.1 Software and Work Process

The complete methods for both the tumor detection and Hausdorff distance cal-
culations are implemented in a user interactive application made in C++. The
3D rendering is made using OpenGL with the color maps and model shading
implemented in shader programs. Some code for the distance calculations be-
tween geometric primitives and their representation was taken from or inspired
by the library Geometric Tools [27]. Some code for 3D mathematics including
mesh processing and curvature computation was provided. The user interface
is constructed using AntTweakBar [28], a portable UI library that works with
different versions of both OpenGL and DirectX. The window and OpenGL en-
vironments are provided by GLFW [29] and GLEW [30] respectively.

The problems was solved using an iterative development process with some
prototypes first being implemented and tested in MATLAB. Additional third
party software used was Meshlab [31], which was used for constructing high
resolution meshes as well as importing and exporting meshes into different file
formats.

51 Kidney Model Enrichment Project

Rendering Options

EEEEEEEEEEEE@H ==

==
II LIII |sjsjsjujujajs] jujs

=

]
LR E

B

Figure 7: Screenshot of the application developed and used within the project.
It supports rendering of most mesh properties and concepts introduced in the
past and following sections. It also has support for some mesh processing and
some functionality for user friendliness such as color map manipulation and a
screen capture function that removes the GUI and applies anti-aliasing to the
image by multi sampling.

16

3.2 Tumor Detection
3.2.1 Method Overview

The input to the method is a triangular mesh M and the output one or more
spheres that represents tumors. However in the real life case only one tumor
is expected and so in the following sections this may also be assumed. The
different steps of the complete method are mentioned below and are described
more precisely in the following subsections. They are carried out in this order.

1. Compute curvatures and curvature types for all vertices on the mesh.

2. Dilation on the mesh to enclose the vertices of the tumor indicative area.
3. Region forming by recursive tagging.

4. Labeling of all regions as either tumor or non-tumor.

5. Best Fit Spheres (BFS) positioning of the tumor region.

3.2.2 Curvature Computation

The principal curvatures on the surface mesh are calculated for each vertex
using a local surface approximation method as proposed in [20]. The principal
curvatures, k1 and ko, and their corresponding principal directions, t; and
to, denote the maximum and minimum curvatures at a point on the surface.
From the principal curvatures the mean, H, and Gaussian, K, curvatures can
be calculated using Equations 14 and 15. Their sign changes can be used to
construct the table of curvature types seen in Figure 5.

The normal for one vertex is calculated by taking the average of the normals
of all adjacent faces, where each contribution is weighted by the angle of the
face at the vertex [32]. Angle weighted normal computations are in general more
accurate then using constant or area weights [15].

The method used extends the methods mentioned in section 2.4.3 by not
only accounting for the position of the neighboring vertices but also for their
surface normals. This allows for a third-order approximation method [19]. As in
these previously mentioned methods the goal is to calculate an approximation
for the Weingarten matrix W and then eigendecompose it in order to find our
approximated principal directions and curvatures.

In the following we consider the calculations for one vertex v € M that
is surrounded by n directly connected neighbors v; € N'(v), 1 < i < n. The
calculations are done in a local parametric surface space, just as in section 2.4.2.
The local space is created by considering the normal n at v as the z-direction
and then constructing two arbitrary perpendicular vectors that we denote u and
v in the tangent plane at v. The set of vectors (u,v,n) will then be our local
coordinate system where the computations are made.

Just as the quadric method in Section 2.4.3 we now also attempt to fit a
surface to the neighboring vertex data. We let this be a cubic surface patch
given by:

A C
f(z,y) = 2(z,y) = §x2 + Bxy + 53/2 + Dz® + Ex’y + Fzy* + Gy® (16)

17

Where z,y and z are the parameters in u,v and n respectively. We now
remind ourselves of the appearance of W, which is the same as when it was
introduced in section 2.4.2, Equations 10 and 13. However we are now dealing
with an approximation where the surface factors A, B and C' in Equation 16
correspond to the entries in W.

B C

The normal to the surface in Equation 16 is given by:

w[i

folz,y)\ " [Az+ By + 3Da® + 2Exy + Fy?
n(z,y) = | fy(z,y) = | Bz + Cy + Ex? + 2Fxy + 3Gy? (17)
—1 —1

We let n; = (ay, bi,¢;) and p; = (w4, yi, z;) denote the normal and position of
the neighboring vertex v;. Both the position and normal need to be expressed
in the local coordinate system (u,v,n). The transform is done from p, and n;
by first subtracting the position of the current vertex v from p,, then both it
and n; are multiplied with the matrix [u, v,n]” from the left.

% [u7 v, n]T X (pi - U)T

el
Il

PI
Il
s
X
=]

We rewrite n in Equation 17 as (—‘i—, _%v —1) and let:

x=(A B ¢ D E F G)7T

Then we use Equations 16 and 17 together with x which gives us three equa-
tions for each vertex that we can solve to find the values of the entries in x.

1
(o0 @iy w0 27wy wyl y)x =z

@

(x; yi O 3:512 2;1; yf O)x:—ﬁ

7

b,

0 z y; O xf 2x;Y; 3yf’)x:fci‘

1

This system is then written as:

Ux=d

U is a 3n x 7 matrix and d is a 3n vector. It should be noted that the vertex
must have at least three neighboring vertices in order for the system to not be
underdetermined. However in our case the system will always be overdetermined
which means a true solution does not exist and has to be approximated using
a least-squares fit. For more information on how such a systems can be solved
see section 3.2.6. Since our kidney meshes are closed and cyclic a case where
a vertex has less than 3 neighbors is not possible. Should such vertices occur,
which is a possibility for a general mesh, the same method is however applied
but with an expected accuracy penalty.

18

Once we have our solution vector x we can use the values of A, B and C
to form W, whose eigenvectors, e; and ey, and associated eigenvalues, A\; and
Ao where A1 > Ao, gives us the principal directions and curvatures. Since the
eigenvectors are given in local parameter space they need to be transformed into
world space in order to obtain t; and ts.

1 2
ti=e; Xxu+tejxv

1 2
to=e; xu+e; xv

Where the upper indices indicate the index in the vector. The transform con-
tains no scaling so the obtained eigenvalues are equal to the principal curvatures
k1 and ko. The Mean and Gaussian curvatures are calculated using Equations
14 and 15 and the vertex is assigned a curvature type from Figure 5.

19

3.2.3 Morphological Dilatation of the Regions

All vertices are assigned a binary tag based on their curvature types. Vertices
of saddle valley type (Figure 5) are tagged as 1 and all others as 0. Then, the
dilatation is carried out as follows: each vertex tagged as 0 is re-tagged as 1 if
any of its neighbors is tagged as 1, see Algorithm 1. The dilatation is repeated
until a ROI has been found or every vertex has the same tag, which means that
the method has failed.

In practice this is done by simply changing the curvature type in all neighbors
of a vertex that is of saddle valley type to that type. This can be seen in Figure
8 where vertices of all present curvature types exists. All neighbors of a yellow
vertex is then changed to yellow in the dilatation process.

The purpose of the dilatation is to create a closed region of vertices which
surrounds the convex tumor area. The result can be seen in Figures 15a and
15b where the yellow region has grown to completely enclose a set of vertices
that are indicative of the tumor.

(a) Mesh with 0 dilatations. (b) Mesh with 1 dilatation.

Figure 8: A mesh where each vertex has a color coded curvature type. Yellow
vertices are tagged as 1 and so is expanded so that every neighbor of a tagged
vertex also becomes tagged.

Algorithm 1 Dilation. All neighbors of a vertex with curvature type
saddlevalley is re-tagged as 1.

Data:
List of ingoing vertices with an associated tag, Vi, = {v1, ..., Vi, .oy Un }
List of outgoing vertices V, that will replace V;,
Begin:
Copy all vertices from V;,, — V,
for all v; € V;,, do
v; is the vertex at the current index i in V,
if v; is tagged as 1 then
Get list of neighboring vertices of v;, 0,
Set tag of all vertices in v,, to 1
end if
end for

20

3.2.4 Recursive Tagging

The recursive tagging is performed by considering the same binary tags of the
vertices as in the previous Section, 3.2.3. First all vertices are considered as
not belonging to any group and are placed in a list. A vertex that does not
yet belong to a group is chosen from the list and added to a new group. From
the current vertex all neighbors are expanded, if a neighbor has the same tag
as the current vertex, it is added to the group and this vertex is expanded as
well. This process continues until all vertices have been assigned to a group.
See Algorithm 2.

An example can be seen in Figure 9 where two groups are formed. All yellow
vertices form one group and the two remaining vertices form a second group.
For larger meshes multiple such groups are generally formed.

(a) Mesh with 1 dilatation. (b) Mesh with 2 regions.

Figure 9: Yellow vertices are tagged as 1 and others as 0. Vertices with the
same tag belonging to the same connected region will form a separate group.
In this example two groups are formed, all yellow vertices form one group and
the green and the red form another.

Algorithm 2 Region forming by recursive tagging.

Data:
List of ingoing vertices with an associated tag, Vi, = {v1, ..., Vi, ..., Un }
Return a list of groups of vertices, R = {R1, ..., Rj, ..., R }

procedure EXPAND(Vertex v)
Get neighboring vertices, n = N (v)
for all v € n do
if © has same tag as v then
Add ¢ to same group as v and EXPAND(?)
end if
end for
end procedure

Begin:
for all v € V;, do
if v does not yet belong to group then
Add v to a new group and EXPAND(v)
end if
end for

21

3.2.5 Region Labeling

In order to classify the groups as a tumor several features are calculated for
each group. The once used are the most common curvature type, the relative
amount of vertices in the group compared to the whole mesh, mean values of
the principal curvatures k1 and ko and then the groups mean and Gaussian
curvatures are calculated from these curvatures. It is possible to by hand define
some criteria that selects the correct groups but in order to automatize part of
the process a Artificial Neural Network (ANN) [33] is used as a classifier. The
ANN is trained in MATLAB using the ANN toolbox and then exported to a
text file that is later imported by the main application where the feed forward
classification procedure is calculated.

The layout of the ANN can be seen in Figure 10, it was found using some
experimenting and rules of thumb. It has six inputs, one for each feature, a
hidden layer with 10 nodes, a bias and a hyperbolic tangent activation function
that outputs values in the range [—1,1]. The output layer has 10 inputs, same
as the number of outputs from the hidden layer, a bias, a logarithmic sigmoid
as activation function that outputs values in the range of [0, 1] where 1 means
the group represents a tumor and 0 means that it is not a tumor. Training data
was created by visual inspection and manual tagging of the groups as either
being indicative of a tumor or not. One way to automatize this process could
be to grow artificial tumor like areas on the mesh but due to time constraints
this was not feasible.

Hidden Layer Output Layer

Input Output

10 1

Figure 10: Typical layout of the classifying ANN used.

3.2.6 Best Fit Sphere (BFS) Positioning

Fitting a sphere in a best fit sense to a vertex distribution V of n vertices can be
formulated as a non-linear least squares optimization problem [34]. The squared
distance from one vertex v; € V to the sphere is given by Equation 18, where x
is the position and radius of the sphere. The squared sum of Equation 18 over
all vertices is written in vector form as F(x) in Equation 19. The problem is
solved using an unconstrained Gauss-Newton method [35] with a line search.

From the squared distance from v; to the sphere in Equation 18 the mini-
mization function is formulated as Equation 19.

filx) = (i —a)® + (y; =0 + (5 —0)* =%, x={z,y,z,r} (18

min f(x) = 5 3 fix)? = 5F)TF(x) (19)

i=1

22

The gradient vector and Hessian matrix is calculated for v; as Equations 20
and 21.

[—2(z; — x) T
Vi) = | 5 Y (20)
—2r
2 0 0 0
V@ =0 29 o (21)
00 0 -2

The chain rule gives the gradient and Hessian of the minimization function
in Equations 22 and 23. VF(x) is an n X 4 matrix where row ¢ contains the
gradient vector V f;(x).

Vf(x) = VF(x)F(x) (22)
V2if(x) = VF(x)VF(x)T + Z [(x)V2 fi(x) (23)

A Gauss-Newton approximation is made to the Hessian so that the sum-
mation part is ignored and it gets the final expression as Equation 24. This
approximation is made since the summation part causes the matrix to become
non-positive semi definite and therefore cause the optimization algorithm to fail.

V2f(x) ~ VE(x)VF(x)" (24)

Equation 25 is solved for p and p is added to the solution x. This is done
iteratively until the size of the gradient vector, Equation 22, is sufficiently close
to zero. In practice this limit was set to about 10x 6.

(25)

{ VF(x)VE(x)"p = VF(x)F(x)
X=X—p

In order to make sure that every iteration decreases the value of the error
function a bracketing style line search strategy was used in which the length of
p was halved until this criterion was fulfilled.

After a solution has been found, the radius of the sphere is adjusted while
its position is not modified. This way, it prevents the sphere from extending
through the vertex distribution and guarantees that the approximated tumor
lies entirely inside the kidney model.

The complete method can be seen in Algorithm 3.

A 2D equivalent, a Best Fit Circle problem, can be seen in Figure 11. There,
a perturbed arc distribution of vertices can be seen as blue x’s. The initial
solution is set as the barycenter of the vertex distribution and the initial radius
as half the distance to the closest vertex. This is also used to initialize the BFS.
The final solution after the radius adjustment can be seen as the red circle.

23

“ — Adjusted radius
x X Solution
pd RGN Initial

Figure 11: Best Fit Circle, 2-dimensional equivalent of the BFS problem. The
light blue circle is the initial position and the red and green circles are the
solutions, the red circle having the same center as the green but with an adjusted
radius so that it lies completely inside the vertex distribution, seen as blue X’s.

Algorithm 3 Best Fit Spheres method.

Data:
List of ingoing vertices: V = {v1,..., 04, ..., Up }
Returns a vector: x = {z,y, 2,7}
Begin:
Initialize {x,y, z} € x to the barycenter of V
Set r € x to half the shortest distance from {z,y,2} € x to V
Calculate initial value of V f(x)

while Vf(x) > ¢ AND max number of iterations NOT achieved do
for all v; € V do
Add contribution of f;(x) to F(x)
Add contribution of V f;(x) to VF(x)
end for

Calculate function: f(x) =
Calculate gradient: V f(x))

Calculate Hessian: V2f(x) = VF(x)VF(x)T

Solve the system for p: VF(x)VF(x)Tp = VF(x)F(x)

a=1
repeat
Xs =X —ap
Calculate a function value f(x;) in same way as f(x)
a=1la
until f(x) > f(xs) OR max number of line search iterations achieved
X = X
end while
Adjust r € x so that it is the minimum distance from {z,y, 2} € x to V

24

3.3 Model Error Estimation using the Hausdorff Distance
3.3.1 Hausdorff Distance

Given two surface meshes M 4 and M p in R3 the one-sided Hausdorff distance

h(Ma, Mp) from My to Mg, h(My, Mp) is defined as:

h(Ma, MB) = mazaea , (minge ap,d(a, b)) (26)

where d(.,.) is the euclidean distance between the points a and b. The two
sided Hausdorff distance H (M4, Mp) is then defined as:

H(Ma, Mp) = maz(h(Ma, Mp), (Mg, M) (27)

These definitions are also valid for general surfaces S, not just surface meshes.
Exact Hausdorff distances are complicated and time consuming to compute for
large general meshes. Therefore an approximate computation of Equation 26 is
performed. All triangles in M 4 are sub-sampled at random positions k-times
within the triangle and the distance from the sampled points to all triangles
in Mp is calculated. An example using two surfaces consisting of one triangle
each can be seen in Figure 12. Sub-sampling of triangles is compared to a
uniform triangle subdivision in [23] and is found to produce similar results and
convergence. Randomized sub-sampling of surfaces is also used when calculating
Hausdorff distances in the context of non-uniform rational basis splines surfaces
(NURBS) [36]. For each vertex and for each sampled point on mesh My the
shortest distance to the surface of mesh Mp is computed. The current largest
distance is kept and updated once a larger distance is discovered. Once all points
have been queried against the other mesh this largest distance is h(M4, Mp).
h(Mp, M) is computed in the analogous way and H(M 4, Mp) is computed
using Equation 27.

A triangle can be randomly sampled by using Equation 28. v4,vp,vc are the
three vertices of the triangle and s is the sampled point inside the triangle. ry
and ry are random numbers sampled between and including 0 and 1.

s=(1—/r1)-va+r1-(1=r2)) -vp+/r1-12) vc
S,VA,VB,VC = [a:,y7z] ER?) (28)
r1,T2 € [0,1}

The distance between a triangle and a point in R? can be calculated in dif-
ferent ways, e.g. by projecting the point onto the surface of the triangle and
performing the initial calculation in R? and afterwards adding the distance to
the plane [37]. The method used is the one implemented in [27] and is based
around breaking the problem into parts where distances are calculated to the
triangle plane, the line segments and its vertices. The MSD from M4 to Mp
is calculated as the mean of the square root distance of every sampled point.

(29)

25

Figure 12: One sided Hausdorff-distance from surface M 4 to Mg, h(M,, Mp),
seen as the yellow line. Surface M 4 is sampled 10 times in addition to its vertices
and the closest distance for every such point to surface Mp is calculated. The
largest of all those distances is the approximated one sided Hausdorff-distance.

3.3.2 Optimization Using Bounding Volume Hierarchies

The brute force Hausdorff-distance computation method was optimized using
a BVH. The approach uses sphere swept rectangles (SSR) that encapsulates
different parts of the surface and is stored in a binary tree structure [25]. A
SSR is a Minkowsky sum of a rectangle in R? and a sphere of some radius at
all points on the rectangle.

Oriented BVs are generally preferred over axis aligned bounding boxes (AABB)
and bounding spheres (BS) since they can give a tighter fit around the triangles
and converge much faster to the underlying geometry, therefore fewer BVs are
needed [38]. However when comparing against SSRs, distance queries against
BS’s is faster and their memory consumption lower. Comparing SSR. against the
also commonly used oriented bounding box (OOB) the SSR. provides simpler
and faster distance queries. An approach with mixed BVs was considered but
not implemented due to time constraints and already satisfying results using
only SSRs.

The SSRs are constructed as follows. Given a list of IV triangles, a sub-mesh,
i ={vy,vh,v5} € My a SSR is created. First a mean p is calculated for the
triangles and their vertices using Equation 30.

N
1 i i i :
r=35 ;(UA + v +vo), peR’ (30)
Then a 3 x 3 covariance matrix C' is calculated for Mg using Equation 31.
N (nini | oaiai | aiai)

Oj :ﬁzz':o(pjpk+qjqk+rjrk)7 1<j k<3
P =va—H (31)
4 =uvp-—p
o= —p

The three eigenvectors of C' are calculated and normalized to form the basis
of the SSR, centered at u. Along each eigenvector the maximum distance to a
vertex in M is calculated and the size of the SSR is adjusted to those distances.
Along the eigenvector with the highest distance is the rectangles long side, along
the one with next highest distance is the short side and along the shortest is

26

the normal to the rectangle. Then the size of the rectangle and its sphere are
adjusted so that all vertices in M lie inside the bounding volume. This method
is somewhat sensitive to the density if the vertex distribution and can be further
improved upon by the use of convex hull sampling which will effectively cause
the SSR to align better with the shape of the mesh. This improvement was left
out because of time constraints and already good performance.

The BVH is built using a top-down approach which means that first, we start
with a BV that encloses all triangles in M. Then assuming M, contains a
large number of triangles it will be subdivided into two subsets, M, and M.
These will form the branches of our current node in the BVH. This process
of subdividing the triangle sets continues until they contain fewer then some
specified amount of triangles. Setting this amount too high will speed up the
BVH creation but slow down the distance queries so some hands-on tuning is
generally necessary for good results. Through some experimenting it was found
that for the models used a limit of about 10 triangles per leaf node gives good
performance. The triangles in M are separated into the new subsets by a plane
centered at p with a normal parallel to the current SSR’s long side axis. Then
for each triangle in M the barycenter is calculated and depending on which
side of the plane the barycenter lies on the triangle is put in either Mg, or M.
The final result of a complete BVH of a 3D model on different depth levels can
be seen in Figure 13.

(a) Root depth. (b) Second depth level. (c) Leaf nodes.

Figure 13: Varying levels of depth in BVH enclosing the triangles and their
vertices using SSRs on a 3D model.

The distance queries against the BVH is done for vertices. For distance calcu-
lations of vertices against rectangles and SSRs in 3D see [27] or [39]. The tree is
traversed using an informed depth first search (DFS). Informed in this context
means knowledge about the child nodes is taken into account when deciding
which node to expand first. The node whose associated BV has the shortest
distance to the queried vertex is expanded first. An example of a BVH distance
query can be seen in Figure 14. Expanded nodes are visible in red and in green,
the next node to be expanded. First the root node is expanded and the first
two child nodes are inspected, Figure 14a. The child node with the BV with the
shortest distance to the queried vertex is expanded. This distance is visible next
to the node or triangle. The current shortest distance to an unexpanded node
or triangle is visible in the box next to the tree. The tree is traversed in Figures
14a through 14e and the final distance of 1.7 is returned. In this example only
one main branch of the tree is traversed and we do queries against less than half

27

of the triangles. In this example a brute force approach is probably faster but
it demonstrates the power of the approach, should the number of triangles and
nodes in the tree be greater.

1.0

(a) Root expansion. (b) 1st expansion.
-

2.0

(c) 2nd expansion. (d) 3rd expansion.

(e) Final expansion.

Figure 14: BVH distance query. Red nodes are visited and the green node is
the next to be expanded. The number in the box displays the currently known
shortest distance to a triangle or unexpanded node. Traversal ends when no
unexpanded nodes with a shorter distance than the distance to a currently
known triangle exists. Then that distance is returned.

28

4 Results and Validation

4.1 Sphere Tumor Approximation
4.1.1 Results

The results of a sphere approximation of the tumor location and size can be
seen in Figure 15 together with maps of the curvature types and the obtained

regions of the mesh.
& _/‘

(a) Curvatures (b) Curvatures) Obtained) Tumor location
before dilatations. after two reglons and size estimation.
dilatations.

Figure 15: Result of curvature computations and two dilatations, region forming
and tumor location.

In Figure 16, the sphere approximating the tumor is compared to the image
acquisitions from which the mesh was originally reconstructed. The contrast of
the kidney has been augmented with radiopaque agent. Therefore, the tumor
can be seen as a slightly darker area within the red circle in Figure 16a. The
obtained tumor approximation is shown in Figure 16b. It encloses the darker
area while remaining inside the kidney.

(a) Tumor marked with (b) BFS estimation of the
red circle and its center tumor.
indicated by the arrow.

Figure 16: Validation of the best fit sphere on 3D orthogonal slices. The
tumor can be seen in (a) as the slightly darker area within the red circle. The
corresponding BF'S approximation is shown in (b).

29

The precision of the retrieved tumor is obtained by a comparison with its
manual segmentation (see Figure 17 and table 1). Results show satisfying accu-
racy in a medical context since it is below the 5mm margin of error practitioners
use when removing a tumor.

(a) Inhale. (b) Mid-phase. (c) Exhale.

Figure 17: Manually set tumors in blue and the method obtained ones in red.

’ Mesh H Inhale | Mid-phase | Exhale
Distance between center 0.70 1.57 1.14
Radius difference 0.27 0.37 0.97

Table 1: Error estimation (in millimeters) between manually defined sphere
shaped tumors and the BFS approximations. Error is estimated for one kidney
corresponding to three breathing phases.

4.1.2 BFS Convergence

A typical convergence behavior of the BFS method can be seen in figure 18.
The gradient is quickly reduced to a value in size of about 7 x 10~7 after 8
iterations at which the reduction in gradient size starts to flatten out. For this
reason it was set to terminate once the gradient reached a value below 7 x 1076,
The final value of the error function is in this case about 1.2 x 10~°, measured
in millimeters. The line search makes sure that the value of the error function
decrease with each iteration.

30

||Gradient||

Iteration Iteration

(a) Error. (b) Gradient size.

Figure 18: An example of a convergence behavior for the Gauss-Newton method
used in the BFS method.

4.1.3 Execution Time

The execution times for the different parts are presented in Table 2. The mesh
contains 2.9k vertices and 5.8k triangles. The labeling step is omitted since its
computational time is comparatively negligible. Most of the runtime is dedicated
to the computation of curvatures and the region forming by recursive tagging.
Optimizing these steps could considerably improve the whole execution time,
although it is already sufficiently efficient for the considered application. The
method was executed on a simultaneous multi-threading capable CPU with 4
cores at 2.1GHz and 8GBs of RAM.

The normal, curvature and BFS implementations are partially parallelized us-
ing OpenMP and are expected to scale well on increasingly parallel architecture.
The dilatation and tagging methods have serial implementations.

’ H Norm. \ Curv. \ Dil. \ Tagging \ BFS \ Tot. ‘
ms 6.40 110 | 2.45 51.5 | 1.07 | 171
% 3.73 64.2 | 1.43 30.0 | 0.62 | 100

Table 2: Runtime for the different parts in the method, both in ms and as
percentage of total runtime. The steps are in order, computing normals and
curvatures, performing dilatation operations, forming of groups and applying
the BFS method

31

4.2 Validation of the Dynamic Model
4.2.1 Results

The dynamic model is validated using two pairs of meshes. Two are created
by the dynamic model and two are constructed from image acquisitions. The
meshes correspond to breathing phases in between the inhale and mid-phase,
and the mid-phase and exhale. In Figure 19 the results can be seen for the two
mesh pairs. R14 Meta is compared against R14 Real and R36 Meta is compared
against R36 Real.

The distances between the meshes are generally small and the Hausdorff-
distance is within or close to the 5mm margin, table 3. This result indicates
that the dynamic mesh morphing model is indeed a promising approach.

(a) R14 Meta (b) R14 Real (c) R36 Meta (d) R36 Real

Figure 19: Per vertex distance between meshes. Red is a larger distance and
blue is a lower.

| [h(AB) [h(B,A) [H(AB) | msd(A,B) [msd(B,A) [MSD(A,B) |
R14 565 5.16 5.65 1.52 1.28 1.40
R36 358 | 3.27 3.58 0.96 0.91 0.94

Table 3: Hasdorfl-distances and MSD in millimeters for the in-between meshes.

4.2.2 Hausdorff-distance Bounding Volume Optimization

The BVH Hausdorff-distance calculation is compared to a brute force imple-
mentation where distances are calculated between each vertex on one mesh and
each triangle on the other. Four sets of two meshes each was used, two with
a lower resolution and two with a higher. The meshes are the same as in the
previous Section 4.2.1, R14 Lo in Table 4 corresponds to a calculation between
mesh (a) and (b) in Figure 19. The higher resolution meshes are constructed
from the lower resolution ones by subdivision and smoothing. The meshes that
are compared are of similar resolution. The low resolution ones have about
2.8k vertices and 5.7k triangles and the high resolution meshes have about 28k
vertices and 56k triangles.

In Table 4 it can be seen that for the lower resolution meshes the BVH method
is about 5 times faster than the brute force method introduced in Section 3.3.1
and about 50 times faster for the larger meshes.

32

H Construction

Traversal \ Complete BVH

\ Brute Force

R14 Lo 71.57 32.23 103.8 462.6
0.69 0.31 1.0 4.46
R36 Lo 65.77 31.10 96.87 482.8
0.68 0.32 1.0 4.98
R14 Hi 602.7 551.3 1154 60075
0.52 0.48 1.0 52.1
R36 Hi 590.7 479.3 1070 53459
0.55 0.45 1.0 50.0

Table 4: Hausdorff-distance calculation and BVH construction execution times
in ms in the upper rows and in relation to the BVH query in the lower rows. The
times for the complete BVH method include the time for constructing the BVH
as well as the time for distance calculations by traversal of the tree structure.

The use of BVHs increases memory consumption. Each node stores two point-
ers, a rectangle object, a list of pointers to triangles, that is empty if the node
is not a leaf node, and a counter of how many vertices belong to the BV. The
rectangle is constructed out of three 3D vectors and two real numbers, for a
total amount of 11 real numbers. If all these integers, pointers and floating
point values are of the same size, as is the case in this implementation, one
node contains a total of 15 4-byte values and the total memory consumption
can then be calculated as:

Memory Consumption =4 * (K * 154+ N — M)

Where K is the number of BVH nodes, N is the number of triangles and
M is the number of leaf nodes. In table 5 it can be seen that the memory
consumption has an approximate linear dependence on the number of vertices
on the mesh.

Vertices | Triangles | BVH Nodes \ Leaf Nodes \ Memory (MB) \ Byte / Vertex
2286 4568 1407 704 0.10 43.7
8659 17314 5207 2604 0.37 42.9
29194 58384 17487 8744 1.25 42.7

Table 5: Number of BVH nodes and memory consumption for three kidney
meshes that represents the same geometry but with different number of vertices.

33

5 Discussion

5.1 Possible Improvements

During the project several possible improvements to the different parts where
thought of or found in literature but never implemented and tested for various
reasons. Be it time constraints or satisfying results from the approach already
implemented and in use.

Improvements to the tumor finding method could possibly be made to the
curvature computations using the method mentioned in Section 2.4.3, intro-
duced in [20]. At least it should be compared to the current method to see if
it produces any significant difference in curvature values, though it is not ex-
pected since our meshes are relatively smooth, closed, of high resolution and in
general well behaved. A histogram equalization method for the curvature val-
ues k1 and kg or the mean and Gaussian curvatures could possibly improve the
initial region forming. One could also imagine using a more advanced region
forming method e.g. by not considering the curvature types in Figure 5 but
instead using a generalized watershed algorithm on the curvature values. Using
a machine learning technique for the labeling of the regions has the benefit of
automation, however this is lost when data still has to be sorted and marked by
hand. In order to fully automatize this process one could grow artificial tumors
on the surface mesh by displacing vertices e.g. as a bell curve. Then the vertices
belonging to the tumor would be known a priori and training data for a super-
vised method could be created. The BFS method could see an improvement by
using a more advanced line search then the implemented backtracking method.
Though the accuracy it reaches correspond to nanometer scale which is well
below the millimeter scale limit used when treating tumors of this kind and the
convergence is already fast. A form of barrier method could also be used instead
of adjusting the radius of the result. Should the tumor be known to be of some
other geometric shape or be segmented before hand and known to not change
its shape during the breathing cycle, a similar optimization problem could be
formulated and solved by the same general method. All of these relatively small
improvements could possibly result in a more robust and versatile method.

The BVH method used when calculating the Hausdorff distance can be im-
proved by using mixed BVs which could create tighter fits around the triangle
data. Also the way the BV is calculated can be improved, one such improve-
ment is mentioned in Section 3.3.2. One can also imagine using an optimization
method similar to the BFS to fit geometries in a best possible way to the triangle
data.

Many of the algorithms used throughout the project, especially the ones in-
volving computations of vertex properties, are highly parallelizable and could
see benefits in speedup by performing the computations on graphics processing
units (GPU).

34

5.2 Conclusions

We showed that discrete curvatures can be a relevant information to detect
a bumped region indicating a tumor on a surface model. Once this region is
identified, it is possible to retrieve the position and size of the tumor using a
BFS algorithm. However, a prerequisite is that the tumor is large enough and
lies close enough to the surface so that a significant bump may occur. Another
prerequisite is that the mesh resolution has to be high enough to provide good
curvature information. A low resolution would aggravate the local approxima-
tions which would lead to wrong results. This approach is promising but needs
to be consolidated.

Validation of the dynamic model using a Hausdorff-distance and a RMS dis-
tance suggests that the mesh morphing is a valid approach in this context.
However the dynamic model has only been validated in this way for two meshes
made from the same organ. In order to strengthen the result, more such meshes
would be needed. Since there seem to be no one gold standard method for vali-
dating models of this kind other measurements could also be used in conjunction
with the Hausdorff distance. For example it should be excepted for the organ
to be nearly incompressible during normal motion and so volume and possibly
also its surface area should be preserved.

Space partitioning using BVHs can greatly improve the computational time
needed for distance calculations between groups of geometric primitives. The
results in this case ranged from a speedup of 5 to 50 times compared to a
brute force method. The usage of BVHs gives a memory increase that grows
approximately linearly with the mesh size and for larger meshes increased the
memory consumption with 1-2 MBs, which for most real time applications of
this kind is a reasonable trade off.

5.3 Future Work

In order for the tumor detection method to be useful in practice the dynamic
model needs to be continuously validated against image acquisitions where the
kidney is tracked. This is supposed to be performed in real time during a
radiation treatment session and so a very limited amount of image slices can be
produced. The intention is to compare the mesh of the dynamic model against a
vertical and a horizontal slice and calculate an error between the actual position
and shape of the kidney and the current state of the dynamic model. The model
can then be adjusted in order to compensate for this error.

Acknowledgments

I would like to thank my supervisors Valentin Leonardi, Jean-Luc Mari and
Marc Daniel of Aix-Marseille Université, CNRS, LSIS UMR for their insights,
encouragement and for the opportunity to work with them on this project. I
would also like to thank Giang Vo for her previous work and involvement within
the project and Anders Hast for his help and assistance.

Finally I would like to thank the people of Marseille in general and of the
campus of Luminy in particular for being good friends and making my stay in
France both interesting and enjoyable.

35

List of Figures

1

10
11

12

13

Deformation of kidney during the breathing cycle by mesh mor-
phing. L 8
A small set of vertices depicted as circles. They are connected
by edges, black lines. They in turn form faces, the white spaces
on the interior. One vertex is colored red and its neighborhood
vertices has been colored blue. 9
The curvature at point p; is defined as the inverse of radius r; of
the oscillating circle at that point. Note that the curvatures at
the two points p; and ps have different signs since their respec-
tive circle of curvature lie on different sides of the surface, whose
orientation is indicated by the surface normaln. 10
Tangent plane, principal direction planes and surface normal on
a saddle shaped surface. The principal curvatures are visible as

the red curves that don’t lie in the tangent plane. [16] 11
Curvature types by sign in Gaussian and Mean curvatures [17]. . 12
Mean, H, and Gaussian, K, curvatures together with the curva-

ture types formed by their signs. 12

Screenshot of the application developed and used within the project.

It supports rendering of most mesh properties and concepts intro-
duced in the past and following sections. It also has support for
some mesh processing and some functionality for user friendliness

such as color map manipulation and a screen capture function

that removes the GUI and applies anti-aliasing to the image by
multi sampling. L 16
A mesh where each vertex has a color coded curvature type. Yel-

low vertices are tagged as 1 and so is expanded so that every
neighbor of a tagged vertex also becomes tagged. 20
Yellow vertices are tagged as 1 and others as 0. Vertices with

the same tag belonging to the same connected region will form a
separate group. In this example two groups are formed, all yellow
vertices form one group and the green and the red form another. 21
Typical layout of the classifying ANN used. 22
Best Fit Circle, 2-dimensional equivalent of the BFS problem.

The light blue circle is the initial position and the red and green
circles are the solutions, the red circle having the same center as

the green but with an adjusted radius so that it lies completely
inside the vertex distribution, seen as blue x’s. 24
One sided Hausdorff-distance from surface M 4 to Mg, h(My, Mp),
seen as the yellow line. Surface M 4 is sampled 10 times in addi-

tion to its vertices and the closest distance for every such point

to surface M p is calculated. The largest of all those distances is

the approximated one sided Hausdorff-distance. 26
Varying levels of depth in BVH enclosing the triangles and their
vertices using SSRsona 3D model.o 27

36

14

15

16

17

18

19

BVH distance query. Red nodes are visited and the green node
is the next to be expanded. The number in the box displays the
currently known shortest distance to a triangle or unexpanded
node. Traversal ends when no unexpanded nodes with a shorter
distance than the distance to a currently known triangle exists.

Then that distance is returned. 28
Result of curvature computations and two dilatations, region
forming and tumor location. 29

Validation of the best fit sphere on 3D orthogonal slices. The
tumor can be seen in (a) as the slightly darker area within the
red circle. The corresponding BFS approximation is shown in (b). 29
Manually set tumors in blue and the method obtained ones in red. 30
An example of a convergence behavior for the Gauss-Newton

method used in the BFS method. 31
Per vertex distance between meshes. Red is a larger distance and
blueisalower. 32

37

References

[1]

[10]

[11]

Marc Daniel Valentin Léonardi, Vincent Vidal and Jean-Luc Mari. Multi-
ple Reconstruction and Dynamic Modeling of 3D Digital Objects Using a
Morphing Approach. The Visual Computer, 2014.

J.J Corso, E. Sharon, S. Dube, S. El-Saden, U. Sinha, and A. Yuille. Ef-
ficient Multilevel Brain Tumor Segmentation With Integrated Bayesian
Model Classification. IEEE Transactions on Medical Imaging, 27:629 —
640, 2008.

Anna Jerebko, Ronald Summers, James Malley, Marek Franaszek, and
C. Daniel Johnson. Computer-Assisted Detection of Colonic Polyps with
CT Colonography Using Neural Networks and Binary Classification Trees.
Medical Physics, 30:52 — 60, 2003.

Sarang Joshi, Stephen Pizer, Thomas Fletcher, Paul Yushkevich, Andrew
Thall, and J. S. Marron. Multiscale Deformable Model Segmentation and
Statistical Shape Analysis Using Medial Descriptions. IEEE Transactions
on Medical Imaging, 21(5), May 2002.

L. Massoptier and S. Casciaro. A new fully automatic and robust algorithm
for fast segmentation of liver tissue and tumors from CT scans. Furopean
Radiology, 18:1658 — 1665, 2008.

DY Kim and JW Park. Computer-Aided Detection of Kidney Tumor on
Abdominal Computed Tomography Scans. Acta Radiologica, 45:791 — 795,
2004.

Marius Goerge Linguraru, Jianhua Yao, Rabindra Gautam, James Peter-
son, Zhixi Li, W. Marston Linehan, and Ronald Summers. Renal Tumor
Quantification and Classification in Contrast-Enhanced Abdominal CT.
Pattern Recognition, 42:1149 — 1161, 2009.

Natalia Irishina, Miguel Moscoso, and Oliver Dorn. Microwave Imaging
for Early Breast Cancer Detection Using a Shape-based Strategy. IEEE
Transactions on Biomedical Engineering, 56:1143 — 1153, 2009.

M. Linguraru, S. Wang, F. Shah, R. Gautam, J. Peterson, W. Linehan,
and R. Summers. Automated Noninvasive Classification of Renal Cancer
on Multiphase CT. Medical Physics, 38:5738 — 5746, 2011.

M. El-Shenawee and E.L. Miller. Spherical Harmonics Microwave Algo-
rithm for Shape and Location Reconstruction of Breast Vancer Tumor.
IEEE Transactions on Medical Imaging, 25:1258 — 1271, 2006.

H. Yoshida, J. Néappi, P. MacEneaney, D.T. Rubin, and A.H. Dachman.
Computer-Aided Diagnosis Scheme for Detection of Polyps at CT Colonog-
raphy. Radiographics, 22:963 — 979, 2002.

Seongho Seo, Moo Chung, and Houri Vorperian. Heat Kernel Smoothing
Using Laplace-Beltrami Eigenfunctions. MICCAI, pages 505 — 512, 2010.

38

[13]

[14]

[15]

[16]

[25]

[26]

J. Liu, S. WanS. Wang. Yao, M. Linguraru, and R. Summers. Manifold Dif-
fusion for Exophytic Kidney Lesion Detection on Non-contrast CT Images.
MICCAI 8149:340 — 347, 2013.

V. Leonardi, J.-L. Mari, V. Vidal, and M. Daniel. 3D reconstruction from
CT-scan volume dataset - application to kidney modeling. In SCCG 2011,
27th Spring conference on Computer Graphics, pages pp. 141-148, Vinicné,
Slovakia, 28 April 2011.

Mario Botsch et al. Polygonal Mesh Processing. A K Peters, 1 edition,
2010. Chapter 3: Differential Geometry.

Wikipedia. Minimal Surface Curvature Planes. http://en.wikipedia.
org/wiki/Principal_curvature. Accessed: 2014-07-14.

Dimitri Kudelski. Détection automatique d’objets géologiques d partir
de donnés numeériques d’affleurements 3D. PhD thesis, Université de
Provence, Aix Marseille I, 2011.

Sylvain Petitjean. A Survey of Methods for Recovering Quadrics in Triangle
Meshes. ACM Computing Surveys, 2(34), July 2002.

Jack Goldfeather and Victoria Interrante. A novel cubic-order algorithm for
approximating principal direction vectors. ACM Trans. Graph., 23(1):45—
63, January 2004.

Harlen Costa Batagelo and Shin-Ting Wu. Estimating curvatures and their
derivatives on meshes of arbitrary topology from sampling directions. Vis.
Comput., 23(9):803-812, August 2007.

R. Haddad, P. Clarysse, M. Orkisz, P. Croisille, D. Revel, and I E. Magnin.
A Realistic Anthropomorphic Dynamic Heart Phantom. In Computers in
Cardiology, 2005, pages 801-804, Sept 2005.

Mikhail J. Atallah. A Linear Time Algorithm for the Hausdorff Distance
Between Convex Polygons. Information Processing Letters, 17(4):207 — 209,
1983.

Paolo Cignoni, Claudio Rocchini, and Roberto Scopigno. Metro: Measuring
Error on Simplified Surfaces. Technical report, Meshlab, Paris, France,
France, 1996.

Kai Wang, Fakhri Torkhani, and Annick Montanvert. A Fast Roughness-
Based Approach to the Assessment of 3D mesh Visual Quality. Computers
and Graphics, 36(7):808 — 818, 2012. Augmented Reality Computer Graph-
ics in China.

Min Tang, Minkyoung Lee, and Young J. Kim. Interactive Hausdorff Dis-
tance Computation for General Polygonal Models. ACM Trans. Graph.,
28(3):74:1-74:9, July 2009.

Josh Barnes and Piet Hut. A Hierarchical O(N log N) Force-Calculation
Algorithm. Nature, 324:446 — 449, 1986.

39

http://en.wikipedia.org/wiki/Principal_curvature
http://en.wikipedia.org/wiki/Principal_curvature

[27]

LLC Geometric Tools. geometrictools. http://www.geometrictools.
com/. Version: Wild Magic 5.11, License: Boost Software License, Ac-
cessed: 2014-06-17.

Philippe Decaudin. AntTweakBar GUI. http://anttweakbar.
sourceforge.net/. Version: 1.16, License: zlib/libpng, Accessed: 2014-
06-17.

The GLFW Development Team. GLFW. http://www.glfw.org/. version:
3.0.4, License: zlib/libpng, Accessed: 2014-06-17.

Milan Ikits and Marcelo Magallon. GLEW - OpenGL Extension Wrangler.
http://glew.sourceforge.net/. version: 1.10.0, License: Modified BSD
License, Mesa 3-D License and Khronos License, Accessed: 2014-06-17.

ISTT CNR. Meshlab. http://meshlab.sourceforge.net/. License: GPL,
Accessed: 2014-06-17.

Grit Thiirmer and Charles A. Wiithrich. Computing Vertex Normals from
Polygonal Facets. J. Graph. Tools, 3(1):43-46, March 1998.

Andries P. Engelbrecht. Computational Intelligence. John Wiley & Sons,
2 edition, 2007. Chapters 2 and 3.

D Gatinel, J Malet, T Hoang-Xuan, and DT Azar. Corneal Elevation
Topography: Best Fit Sphere, Elevation Distance, Asphericity, Toricity,
and Clinical Implications. Cornea, 30(5):508-515, May 2011.

Ariela Sofer Stephen G. Nash. Linear and Nonlinear Programming.
McGraw-Hill, 1 edition, 1995. Appendix D.

Iddo Hanniel, Adarsh Krishnamurthy, and Sara McMains. Computing the
Hausdorff Distance Between NURBS Surfaces Using Numerical Iteration
on the GPU. Graphical Models, 74(4):255 — 264, 2012. GMP2012.

Mark W. Jones. 3D Distance from a Point to a Triangle, CSR-5-95. Techni-
cal report, Department of Computer Science, University of Wales Swansea,
February 1995.

S. Gottschalk, M. C. Lin, and D. Manocha. OBBTree: A Hierarchical
Structure for Rapid Interference Detection. In Proceedings of the 23rd An-
nual Conference on Computer Graphics and Interactive Techniques, SIG-
GRAPH 96, pages 171-180, New York, NY, USA, 1996. ACM.

Christer Ericson. Real-Time Collision Detection. CRC Press, 1 edition,
2004. Chap. 4-6.

40

http://www.geometrictools.com/
http://www.geometrictools.com/
http://anttweakbar.sourceforge.net/
http://anttweakbar.sourceforge.net/
http://www.glfw.org/
http://glew.sourceforge.net/
http://meshlab.sourceforge.net/

	Introduction
	Introduction
	Goals of this Thesis
	Thesis Outline

	Background and Related work
	Lesion Detection
	Context of the Dynamic Model
	Triangle Meshes
	Differential Geometry and Discrete Curvatures
	1D Curves and Curvature in 2D
	2D Surfaces and Curvature in 3D
	Discrete Curvatures

	Dynamic Model Error Approximation
	Space Partitioning and Bounding Volume Hierarchies

	Method
	Software and Work Process
	Tumor Detection
	Method Overview
	Curvature Computation
	Morphological Dilatation of the Regions
	Recursive Tagging
	Region Labeling
	Best Fit Sphere (BFS) Positioning

	Model Error Estimation using the Hausdorff Distance
	Hausdorff Distance
	Optimization Using Bounding Volume Hierarchies

	Results and Validation
	Sphere Tumor Approximation
	Results
	BFS Convergence
	Execution Time

	Validation of the Dynamic Model
	Results
	Hausdorff-distance Bounding Volume Optimization

	Discussion
	Possible Improvements
	Conclusions
	Future Work

